UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

## Climate change and Global Health: any links?

Rainer Sauerborn, Heidelberg University, Germany Guest professor at Umeå University, Sweden

International Symposium on Research, Policy & Action to Reduce the Burden of Non-Communicable Diseases Universitas Gadjah Mada. Yogyakarta, September 26, 2013



### Inter University Consortium on Global Health



# Concepts of Climate science useful for linking up with NCD control

- Health Impact of climate change (CC)
  - increase in disease burden, mortality, severity of diseases) attributable to climate change, in the absence of climate specific adaptation measures

#### Adaptation

 Disease control or health system specific measures to reduce the health impact of CC

#### Mitigation

 Measures to reduce emissions of Greenhouse Gases (GHG) or increase their sinks

#### Health co-benefits of mitigation

Benefits accruing to our health while implementing a mitigation measure

Reducing the Health Impacts of Climate Change ... while increasing Health Co-Benefits of Climate Policy



### **Processes leading to health impacts**



Climate change does not "create" new diseases, but increases the burden from some climate-sensitive ones, with a typical pattern of time, space and risk groups





## The challenge: empirical, long-term, information:

- Population
  - Population denominator
    (age, sex,indiv. & hh disease
    covariates, location & time
    (L,T)

- Climate
  - -T, Pr, ..., -15 years
  - -Current measurement
  - –Long time projectiosn to 2030, 2050..



- Risk factor
  - Туре
  - Probability it carries
  - Lag time till disease
  - Long time projections

- Disease (NCDs)
  - –Deaths by cause, sex, age L,T
  - -Incident cases,
  - -Burden of disease

## What is an NCD...?

• The big 4?



- NCD plus mental disorders?
- All non-communicable chronic diseases
  - Including MS, Parkinson, malnutrition, etc. etc.

Including HPV-caused cervical cancer, HBV-caused primary liver cancer etc.

# Two-way relationship between NCDs and CC

- Climate change can increase the incidence, severity and case fatality of NCDs
  - Asthma
  - COPD
  - Allergies
  - Cardiovascular diseases (myocardial infarction)
  - Cerebrovascular diseases (stroke)
  - Multiple sclerosis
  - Renal failure/calculi
  - Chronic malnutrition
  - Mental disorders/depression/PSS
- NCDs increase patients' vulnerability to cope with CC, e.g. heat waves
  - Patients with reduced microcirculatory reactivity due to disease or/and drugs
    - Diabetes, hypertension, any vaso-actives substance, obesity
  - People with reduced mobility, e.g. the elderly
  - People with cognitive impairment/mental disorders
  - Patients with renal insufficiency

## Climate change as a risk factor for NCDs

| education High waist-hip ratio Chronic lung disease | Stress Abnormal lung function | Abnormal lung function Chronic |
|-----------------------------------------------------|-------------------------------|--------------------------------|
|-----------------------------------------------------|-------------------------------|--------------------------------|



## Climate change impact on NCDs

|                                                                        | Pathway from climate change to                                      |                                                          | Direction of   |
|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------|
| Climate change impacts                                                 | NCDs                                                                | NCD outcome                                              | health risk    |
|                                                                        | Direct                                                              |                                                          |                |
| More frequent and increased intensity of                               | Heat stress                                                         | CVD                                                      | Increased risk |
| heat extremes                                                          |                                                                     | Respiratory disease                                      |                |
| Increased temperatures and less rainfall                               | Higher ground-level ozone and other air pollutants                  | CVD<br>Respiratory disease (e.g.,<br>bronchitis, asthma) | Increased risk |
|                                                                        | Increases in airborne pollens and spores                            | Respiratory disease (e.g.,<br>bronchitis, asthma)        | Increased risk |
| Changes in stratospheric ozone and in precipitation and cloud coverage | Increased exposure to solar UVR                                     | Autoimmune diseases<br>(multiple sclerosis)              | Reduced risk   |
| Higher winter temperatures in temperate latitudes                      |                                                                     | CVD<br>Respiratory disease                               | Reduced risk   |
| Extreme weather event (fires, floods, storms)                          | Structural damage                                                   | Injuries                                                 | Increased risk |
|                                                                        | Indirect                                                            | 5                                                        |                |
| Drought, flooding                                                      | Impaired agriculture, reduced food yields, and nutrition insecurity | Poor general health                                      | Increased risk |
| Extreme weather event (fires, flooding, storms)                        | Trauma                                                              | Mental health (posttraumatic stress disorder)            | Increased risk |
| Extreme weather event (fires, flooding, storms)                        | Impaired livelihood,<br>impoverishment                              | Mental health<br>(anxiety/depression)                    | Increased risk |

Friel et al, 2011

Figure 1



Estimated changes in annual average  $PM_{2.5}$  (µg/m<sup>3</sup>) and seasonal (6-month) average 1-hr daily maximum ozone (ppb) concentration for the 2030 reference scenario relative to 2005, based on the GISS and the ECHAM models.

## Climate change as risk factor for NCDs



Estimated changes in premature PM<sub>2.5</sub>-related mortality (cardiopulmonary and lung cancer deaths) and ozone-related mortality (respiratory deaths) for the 2030 reference scenario and assuming implementation of methane plus BC group 1 and BC group 2 (all) measures relative to 2005, based on 2030 population projections. 95% CIs reflect uncertainty in the CRF only.

IPCC 2013 (draft)



## Climate change impact on NCDs

|                                               | Pathway from climate change to     |                              | Direction of   |
|-----------------------------------------------|------------------------------------|------------------------------|----------------|
| Climate change impacts                        | NCDs                               | NCD outcome                  | health risk    |
|                                               | Direct                             |                              |                |
| More frequent and increased intensity of      | Heat stress                        | CVD                          | Increased risk |
| heat extremes                                 |                                    | Respiratory disease          |                |
| Increased temperatures and less rainfall      | Higher ground-level ozone and      | CVD                          | Increased risk |
|                                               | other air pollutants               | Respiratory disease (e.g.,   |                |
|                                               |                                    | bronchitis, asthma)          |                |
|                                               | Increases in airborne pollens and  | Respiratory disease (e.g.,   | Increased risk |
|                                               | spores                             | bronchitis, asthma)          |                |
| Changes in stratospheric ozone and in         | Increased exposure to solar UVR    | Autoimmune diseases          | Reduced risk   |
| precipitation and cloud coverage              |                                    | (multiple sclerosis)         |                |
| Higher winter temperatures in temperate       |                                    | CVD                          | Reduced risk   |
| latitudes                                     |                                    | Respiratory disease          |                |
| Extreme weather event (fires, floods, storms) | Structural damage                  | Injuries                     | Increased risk |
| 5<br>                                         | Indirect                           |                              | di i           |
| Drought, flooding                             | Impaired agriculture, reduced food | Poor general health          | Increased risk |
|                                               | yields, and nutrition insecurity   |                              |                |
| Extreme weather event (fires, flooding,       | Trauma                             | Mental health (posttraumatic | Increased risk |
| storms)                                       |                                    | stress disorder)             |                |
| Extreme weather event (fires, flooding,       | Impaired livelihood,               | Mental health                | Increased risk |
| storms)                                       | impoverishment                     | (anxiety/depression)         |                |

Friel et al, 2011

## Daily plot of deaths and temperature, 1-20 August 2003



Source: Hémon and Jougla, 2003

## Repartition of deaths by age and sex, 1-20 August 2003

TABLEAU III.1 : Répartition des décès par âge et sexe pendant la période du 1er au 20 août

|           |        | Femmes |     |       |        | Hommes |     |       |        | Total  |     |        |
|-----------|--------|--------|-----|-------|--------|--------|-----|-------|--------|--------|-----|--------|
|           | 0      | E      | O/E | 0-E   | 0      | E      | O/E | 0-E   | 0      | E      | O/E | 0-E    |
| < 44 ans  | 538    | 547    | 1,0 | -9    | 1 310  | 1 159  | 1,1 | 151   | 1 848  | 1 706  | 1,1 | 142    |
| < 1an     | 72     | 76     | 0,9 |       | 105    | 95     | 1,1 |       | 177    | 171    | 1,0 |        |
| 1-14 ans  | 45     | 41     | 1,1 |       | 59     | 58     | 1,0 |       | 104    | 99     | 1,0 |        |
| 15-24 ans | 60     | 66     | 0,9 |       | 208    | 191    | 1,1 |       | 268    | 257    | 1,0 |        |
| 25-34 ans | 91     | 101    | 0,9 |       | 275    | 270    | 1,0 |       | 366    | 371    | 1,0 |        |
| 35-44 ans | 270    | 262    | 1,0 |       | 663    | 545    | 1,2 |       | 933    | 807    | 1,2 |        |
| 45-74 ans | 3 896  | 2 852  | 1,4 | 1 044 | 7 345  | 5 939  | 1,2 | 1 406 | 11 241 | 8 791  | 1,3 | 2 450  |
| 45-54 ans | 646    | 543    | 1,2 |       | 1 566  | 1 255  | 1,2 |       | 2 212  | 1 798  | 1,2 |        |
| 55-64 ans | 995    | 695    | 1,4 |       | 2 070  | 1 633  | 1,3 |       | 3 065  | 2 328  | 1,3 |        |
| 65-74 ans | 2 255  | 1 614  | 1,4 |       | 3 709  | 3 050  | 1,2 |       | 5 964  | 4 664  | 1,3 |        |
| ≥ 75 ans  | 18 018 | 9 543  | 1,9 | 8 475 | 10 514 | 6 779  | 1,6 | 3 735 | 28 532 | 16 322 | 1,7 | 12 210 |
| 75-84 ans | 6 414  | 3 417  | 1,9 |       | 6 169  | 3 919  | 1,6 |       | 12 583 | 7 336  | 1,7 |        |
| 85-94 ans | 8 878  | 4 924  | 1.8 |       | 3 748  | 2 564  | 1.5 |       | 12 626 | 7 488  | 1.7 |        |
| ≥ 95 ans  | 2 726  | 1 202  | 2,3 |       | 597    | 296    | 2,0 |       | 3 323  | 1 498  | 2,2 |        |
| Total     | 22 452 | 12 942 | 1,7 | 9 510 | 19 169 | 13 877 | 1,4 | 5 292 | 41 621 | 26 819 | 1,6 | 14 802 |

Source: Hémon and Jougla, 2003

Heat wave, Paris 2003, view from an elderly defunct's appartment

The elderly die over proportionally in heat waves, both in OECD as well as in Low income countries (Diboulo et al. 2012)



Fig. 11-5 B1. Relationship between the risk of dying and temperature on the preceding day. Yaxis: log(RR), XS-axis: Temp in °C, lagged by one day. <red elipse optional..>

# Concepts of Climate science useful for linking up with NCD control

- Health Impact of climate change (CC)
  - increase in disease burden, mortality, severity of diseases) attributable to climate change, in the absence of climate specific adaptation measures

#### Adaptation

 Disease control or health system specific measures to reduce the health impact of CC

#### Mitigation

- Measures to reduce emissions of Greenhouse Gases (GHG) or increase their sinks
- Health co-benefits of mitigation
  - Benefits accruing to our health while implementing a mitigation measure

Exploring the potential of general practitioners to implement prevention of adverse health effects of heat for their elderly patients in Rhein-Neckar-County: A mixed-methods-study





Alina Vandenbergh, PhD student, Institute for Public Health and Network for Aging Research

# Concepts of Climate science useful for linking up with NCD control

- Health Impact of climate change (CC)
  - increase in disease burden, mortality, severity of diseases) attributable to climate change, in the absence of climate specific adaptation measures

#### Adaptation

 Disease control or health system specific measures to reduce the health impact of CC

#### Mitigation

- Measures to reduce emissions of Greenhouse Gases (GHG) or increase their sinks
- Health co-benefits of mitigation
  - Benefits accruing to our health while implementing a mitigation measure

## Co-benefits of climate-friendly energy policy

| Sector | Strategy                                                                                                                | Climate change<br>implications      | Pathway from climate<br>change to NCDs | NCD risk                                                                                |
|--------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------|
| Energy | Reduce household use of solid<br>(biomass) fuels                                                                        | Mitigation: reduce<br>GHG emissions | Reduced indoor air pollution           | Reduced CVD<br>Reduced respiratory diseases<br>Reduced COPD                             |
|        | Generate cleaner electricity                                                                                            | Mitigation: reduce<br>GHG emissions | Reduced outdoor<br>pollution           | Reduced respiratory diseases                                                            |
|        | Improve household energy<br>efficiency: provide efficient<br>heating and cooling appliances,<br>improve home insulation | Mitigation and adaptation           |                                        | Reduced CVD<br>Reduced respiratory diseases<br>Reduced extreme<br>temperature mortality |

<sup>a</sup>Abbreviations: COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; GHG, greenhouse gas; NCDs, noncommunicable diseases.

## Co-benefits of climate-friendly agricultural practices

| Sector                  | Strategy                                                                           | Climate change<br>implications                         | Pathway from climate<br>change to NCDs                         | NCD risk                                                           |
|-------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|
| Food and<br>agriculture | Reduce production and<br>consumption of animal source<br>products                  | Mitigation: reduce<br>GHG emissions                    | Less saturated fat intake                                      | Reduced CVD<br>Reduced colorectal cancer<br>Reduced general health |
|                         | Support rural development: new<br>food production techniques,<br>rural livelihoods | Adaptation: improve<br>resilience to<br>climate change | Improved and expanded<br>supply of nutritional<br>food sources | Decreased undernutrition<br>and improved resilience to<br>NCDs     |
|                         | Food system diversification:<br>invest in urban agriculture                        | Adaptation                                             | Increased food security                                        | Increased resilience to NCDs                                       |

<sup>a</sup>Abbreviations: COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; GHG, greenhouse gas; NCDs, noncommunicable diseases.

## Co-benefits of urban planning

|          |                                   | Climate change     | Pathway from climate    |                              |
|----------|-----------------------------------|--------------------|-------------------------|------------------------------|
| Sector   | Strategy                          | implications       | change to NCDs          | NCD risk                     |
| Urban    | Improve walking and cycling       | Mitigation: reduce | Increased active        | Reduced CVD                  |
| planning | infrastructure                    | GHG emissions      | transport, physical     | Reduced obesity              |
|          |                                   |                    | activity                | Reduced respiratory diseases |
|          | Develop and support community     | Mitigation: reduce | Increased connectivity; | Reduced obesity              |
|          | hubs                              | GHG emissions      | reduced use of fossil   | Reduced CVD                  |
|          |                                   |                    | fuel-dependent cars;    | Reduced heat stress          |
|          |                                   |                    | more active travel      | Reduced respiratory diseases |
|          |                                   |                    |                         | Improved mental health       |
|          | Reduce use of fossil              | Mitigation: reduce | Reduced urban air       | Reduced lung cancer          |
|          | fuel-dependent cars, supply       | GHG emissions      | pollution; reduced      | Reduced respiratory diseases |
|          | hybrid or electric cars for fleet |                    | road traffic volume     |                              |
|          | vehicles                          |                    |                         |                              |
|          | Improve urban design, including   | Mitigation and     | More social             | Reduced obesity              |
|          | street trees, pedestrian          | adaptation         | connectivity; more      | Reduced CVD                  |
|          | crossings, more footpaths,        |                    | shade; greater          | Reduced heat stress          |
|          | reduced distance to public        |                    | walkability and active  | Reduced respiratory diseases |
|          | transport, more urban green       |                    | travel                  | Improved mental health       |
| 8        | space                             |                    |                         |                              |

<sup>a</sup>Abbreviations: COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; GHG, greenhouse gas; NCDs, noncommunicable diseases.

#### Health co-benefits of mitigation: transport, London

|                            | Change in disease burden | Change in premature<br>deaths |
|----------------------------|--------------------------|-------------------------------|
| Ischaemic heart<br>disease | 10-19%                   | 1950-4240                     |
| Cerebrovascular<br>disease | 10-18%                   | 1190-2580                     |
| Dementia                   | 7-8%                     | 200-240                       |
| Breast cancer              | 12-13%                   | 200-210                       |
| Road traffic crashes       | 19-39%                   | 50-80                         |

Andy Haines, 2010

#### Health co-benefits of mitigation: transport, Dehli

|                            | Change in disease burden | Change in premature<br>deaths |
|----------------------------|--------------------------|-------------------------------|
| Ischaemic heart<br>disease | 11-25%                   | 2490-7140                     |
| Cerebrovascular<br>disease | 11-25%                   | 1270-3650                     |
| Road traffic crashes       | 27-69%                   | 1170-2990                     |
| Diabetes                   | 6-17%                    | 180-460                       |
| Depression                 | 2-7%                     | NA                            |

Andy Haines, 2010

### CONCLUSION (i): Similarities of NCD and CC&health research

- Long lag times between risk and disease
- Long-term population-based cohort studies are key
- Concept of risk factor/population-attributable risk
- Climate change as an effect-modifier of NCD risk
- NCD as increased vulnerability to CC impact
- NCD as climate impact
- Involvement of non-health sectors is key as in all global health approaches
  - In research
  - In policy response

## CONCLUSION (ii) Mutual influence of NCDs and climate-related health impacts

- Positive:
  - some co-benefits of mitigation (climate policy) reduce NCD risk
- Negative
  - Climate change increases NCD-burden
  - NCDs decrease the adaptation capabilities of the chronically ill/multi-morbid patient

## Teaching challenges for our IUCGH

- Include NCD-CC links in all graduate and postgraduate training formats
- Fund PhD thesis in this area
- Create junior research group...

## Research challenges for our IUCGH

- Quantify plausible pathways with measured effects in a longitudinal population-based approach
- Project climate-change negative attributable impacts on NCDs till 2050 and 2100
- Apply adaptation measures to NCD control
- Estimate their costs and effectiveness
- Quantify positive co-benefits
- Translation into national/regional policy

### Inter University Consortium on Global Health





| Ill health, disease or injury issue related to climate change            | Exposure route                                         | Ill health issue type<br>(N, C or I) |
|--------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|
| Heat exhaustion at work or in daily life                                 | Direct: heat                                           | Ν                                    |
| Accidents related to heat exhaustion                                     | Direct: heat                                           | Ι                                    |
| Clinical effects of heat on persons with chronic diseases                | Direct: heat                                           | N                                    |
| Heat stroke illness and death                                            | Direct: heat                                           | N                                    |
| Injuries and drowning due to extreme weather                             | Direct: extreme weather                                | Ι                                    |
| Epidemics and drowning due to flooding of coastal areas (sea level rise) | Direct: extreme weather and sea level rise             | N, C, I                              |
| Heart and lung effects due to air pollution                              | Indirect: air pollution                                | Ν                                    |
| Diarrheal diseases                                                       | Indirect: water and food pollution                     | С                                    |
| Malnutrition                                                             | Indirect: lack of food                                 | N, C                                 |
| Suicides among farmers                                                   | Indirect: lack of income and food                      | Ι                                    |
| Vector-borne diseases, e.g. malaria, dengue                              | Indirect: ecologic change for vectors                  | С                                    |
| Mental health effects among environmental refugees                       | Indirect: lack of basic necessities and social support | Ν                                    |

#### Table 1 Likely ill health effects of climate change factors ordered by exposure route and type of ill health issue

N non-communicable, chronic disease or mental health issue, C communicable or infectious disease issue, I injury issue

### ... et les femmes

Climate Change, Noncommunicable Diseases, and Development: The Relationships and Common **Policy** Opportunities

S. Friel,<sup>1,2</sup> K. Bowen,<sup>1</sup> D. Campbell-Lendrum,<sup>3</sup> H. Frumkin,<sup>4</sup> A.J. McMichael,<sup>1</sup> and K. Rasanathan<sup>5</sup>

Annu. Rev. Public Health 2011. 32:133-47

## Additional warming as key factor

Tropical areas are already so hot during parts of the year that people's health, physiology and productivity are impaired

## ANU Summary of basic thermal physiology principles

#### $M-W=E_{res}+C_{res}+R+C+E+S$

Where M - the metabolic rate

W - the rate of external working

Eres - the rate of heat transfer by evaporation from respiration

Cres - the rate of heat transfer by convection from respiration

R - the rate of heat transfer by radiation

- C the rate of heat transfer by convection from the skin
- E the rate of heat loss by evaporation from the skin

S - the rate of heat storage in the body

The energy (metabolic rate, M) generated in the body by physical activity and work (W) will increase body heat, which must be released to the environment in order to avoid excessive core body temperature (which normally is 37 °C).

Construction workers in India:

1-hour lunch break in cool period, 5hour break in hot period



#### Only working in the morning hours; too hot after lunch

**Sugar cane cutting, Nicaragua** 

**Exposure to chemicals;** 

Heat increases evaporation of solvents and certain pesticides





